J Anim Breed Genet. 2021 Mar 8. doi: 10.1111/jbg.12542. Online ahead of print.
ABSTRACT
A total of 184 Djallonké (West African Dwarf) sheep of Burkina Faso were analysed for Copy Number Variations (CNV) using Ovine 50 K SNP BeadChip genotyping data and two different CNV calling platforms: PennCNV and QuantiSNP. Analyses allowed to identify a total of 63 candidate Copy Number Variations Regions (CNVR) on 11 different ovine chromosomes covering about 82.5 Mb of the sheep genome. Gene-annotation enrichment analysis allowed to identify a total of 751 potential candidate ovine genes located in the candidate CNVR bounds. Functional annotation allowed to identify five statistically significant Functional Clusters (FC; enrichment factor > 1.3) involving 61 candidate genes. All genes forming significantly enriched FC were located on ovine chromosome (OAR) 21. FC1 (22 genes including PAG4 and PAG6) and FC5 (three genes: CTSC, CTSW and CTSF), coding proteases (peptidases and cathepsins, respectively), were involved in reproductive performance and modulation of gestation. Both FC3 and FC4 were involved in inflammatory and immunologic response through coding serum amyloid A and B-box-type zinc finger proteins, respectively. Finally, FC2 consisted of 27 genes (including OR10G6 and OR8B8) involved in olfactory receptor activity, key for animals adapting to new food resources. CNVR identified on at least 15% of individuals were considered CNVR hotspots and further overlapped with previously reported quantitative trait loci (QTL). CNVR hotspots spanning genes putatively involved with lipid metabolism (SKP1, TCF7, JADE2, UBE2B and SAR1B) and differential expression in mammary gland (SEC24A and CDKN2AIPNL) on OAR5 and dairy traits (CCDC198 and SLC35F4) on OAR7 overlapped with QTL associated with lipid metabolism, milk protein yield and milk fat percentage. Information obtained from local sheep populations naturally adapted to harsh environments contributes to increase our understanding of the genomic importance of CNV.
PMID:33682236 | DOI:10.1111/jbg.12542