Categories
Nevin Manimala Statistics

A Risk Prediction Model for Operative Mortality after Heart Valve Surgery in a Korean Cohort

J Chest Surg. 2021 Apr 5;54(2):88-98. doi: 10.5090/jcs.20.102.

ABSTRACT

BACKGROUND: This study aimed to develop a new risk prediction model for operative mortality in a Korean cohort undergoing heart valve surgery using the Korea Heart Valve Surgery Registry (KHVSR) database.

METHODS: We analyzed data from 4,742 patients registered in the KHVSR who underwent heart valve surgery at 9 institutions between 2017 and 2018. A risk prediction model was developed for operative mortality, defined as death within 30 days after surgery or during the same hospitalization. A statistical model was generated with a scoring system by multiple logistic regression analyses. The performance of the model was evaluated by its discrimination and calibration abilities.

RESULTS: Operative mortality occurred in 142 patients. The final regression models identified 13 risk variables. The risk prediction model showed good discrimination, with a c-statistic of 0.805 and calibration with Hosmer-Lemeshow goodness-of-fit p-value of 0.630. The risk scores ranged from -1 to 15, and were associated with an increase in predicted mortality. The predicted mortality across the risk scores ranged from 0.3% to 80.6%.

CONCLUSION: This risk prediction model using a scoring system specific to heart valve surgery was developed from the KHVSR database. The risk prediction model showed that operative mortality could be predicted well in a Korean cohort.

PMID:33790059 | DOI:10.5090/jcs.20.102

By Nevin Manimala

Portfolio Website for Nevin Manimala