PLoS One. 2021 Apr 16;16(4):e0249811. doi: 10.1371/journal.pone.0249811. eCollection 2021.
ABSTRACT
In Appalachia, La Crosse virus (LACV) is a leading pediatric arbovirus and public health concern for children under 16 years. LACV is transmitted via the bite of an infected Aedes mosquito. Thus, it is imperative to understand the dynamics of the local vector population in order to assess risk and transmission. Using entomological data collected from Knox County, Tennessee in 2013, we formulate an environmentally-driven system of ordinary differential equations to model mosquito population dynamics over a single season. Further, we include infected compartments to represent LACV transmission within the mosquito population. Findings suggest that the model, with dependence on degree days and accumulated precipitation, can closely describe field data. This model confirms the need to include these environmental variables when planning control strategies.
PMID:33861763 | DOI:10.1371/journal.pone.0249811