PLoS One. 2021 May 6;16(5):e0250660. doi: 10.1371/journal.pone.0250660. eCollection 2021.
ABSTRACT
Alzheimer’s disease (AD) is the commonest progressive neurodegenerative condition in humans, and is currently incurable. A wide spectrum of comorbidities, including other neurodegenerative diseases, are frequently associated with AD. How AD interacts with those comorbidities can be examined by analysing gene expression patterns in affected tissues using bioinformatics tools. We surveyed public data repositories for available gene expression data on tissue from AD subjects and from people affected by neurodegenerative diseases that are often found as comorbidities with AD. We then utilized large set of gene expression data, cell-related data and other public resources through an analytical process to identify functional disease links. This process incorporated gene set enrichment analysis and utilized semantic similarity to give proximity measures. We identified genes with abnormal expressions that were common to AD and its comorbidities, as well as shared gene ontology terms and molecular pathways. Our methodological pipeline was implemented in the R platform as an open-source package and available at the following link: https://github.com/unchowdhury/AD_comorbidity. The pipeline was thus able to identify factors and pathways that may constitute functional links between AD and these common comorbidities by which they affect each others development and progression. This pipeline can also be useful to identify key pathological factors and therapeutic targets for other diseases and disease interactions.
PMID:33956862 | DOI:10.1371/journal.pone.0250660