Categories
Nevin Manimala Statistics

A machine learning approach to inform developmental milestone achievement for children with autism

JMIR Med Inform. 2021 May 12. doi: 10.2196/29242. Online ahead of print.

ABSTRACT

BACKGROUND: Care for children with autism spectrum disorder (ASD) can be challenging for families and medical care systems. This is especially true in Low-and-Middle-Income-countries (LMIC) like Bangladesh. To improve family-practitioner communication and developmental monitoring of children with ASD, [spell out] (mCARE) was developed. Within this study, mCARE was used to track child milestone achievement and family socio-demographic assets to inform mCARE feasibility/scalability and family-asset informed practitioner recommendations.

OBJECTIVE: The objectives of this paper are three-fold. First, document how mCARE can be used to monitor child milestone achievement. Second, demonstrate how advanced machine learning models can inform our understanding of milestone achievement in children with ASD. Third, describe family/child socio-demographic factors that are associated with earlier milestone achievement in children with ASD (across five machine learning models).

METHODS: Using mCARE collected data, this study assessed milestone achievement in 300 children with ASD from Bangladesh. In this study, we used four supervised machine learning (ML) algorithms (Decision Tree, Logistic Regression, k-Nearest Neighbors, Artificial Neural Network) and one unsupervised machine learning (K-means Clustering) to build models of milestone achievement based on family/child socio-demographic details. For analyses, the sample was randomly divided in half to train the ML models and then their accuracy was estimated based on the other half of the sample. Each model was specified for the following milestones: Brushes teeth, Asks to use the toilet, Urinates in the toilet or potty, and Buttons large buttons.

RESULTS: This study aimed to find a suitable machine learning algorithm for milestone prediction/achievement for children with ASD using family/child socio-demographic characteristics. For, Brushes teeth, the three supervised machine learning models met or exceeded an accuracy of 95% with Logistic Regression, KNN, and ANN as the most robust socio-demographic predictors. For Asks to use toilet, 84.00% accuracy was achieved with the KNN and ANN models. For these models, the family socio-demographic predictors of “family expenditure” and “parents’ age” accounted for most of the model variability. The last two parameters, Urinates in toilet or potty and Buttons large buttons had an accuracy of 91.00% and 76.00%, respectively, in ANN. Overall, the ANN had a higher accuracy (Above ~80% on average) among the other algorithms for all the parameters. Across the models and milestones, “family expenditure”, “family size/ type”, “living places” and “parent’s age and occupation” were the most influential family/child socio-demographic factors.

CONCLUSIONS: mCARE was successfully deployed in an LMIC (i.e., Bangladesh), allowing parents and care-practitioners a mechanism to share detailed information on child milestones achievement. Using advanced modeling techniques this study demonstrates how family/child socio-demographic elements can inform child milestone achievement. Specifically, families with fewer socio-demographic resources reported later milestone attainment. Developmental science theories highlight how family/systems can directly influence child development and this study provides a clear link between family resources and child developmental progress. Clinical implications for this work could include supporting the larger family system to improve child milestone achievement.

CLINICALTRIAL: We took the IRB from Marquette University Institutional Review Board on July 9, 2020, with the protocol number HR-1803022959, and titled “MOBILE-BASED CARE FOR CHILDREN WITH AUTISM SPECTRUM DISORDER USING REMOTE EXPERIENCE SAMPLING METHOD (MCARE)” for recruiting a total of 316 subjects, of which we recruited 300. (Details description of participants in Methods section).

PMID:33984830 | DOI:10.2196/29242

By Nevin Manimala

Portfolio Website for Nevin Manimala