Mol Biol Rep. 2021 May 22. doi: 10.1007/s11033-021-06413-x. Online ahead of print.
ABSTRACT
The rhizosphere of a plant is an important interface for the plant-microbe interaction that plays a significant role in the uptake and removal of heavy metal from contaminated sites. Eichhornia crassipes is a free-floating macrophyte and a well-known metal hyperaccumulator. It is a promising plant, which harbors a diverse microbial community in its rhizosphere. Therefore it is hypothesized that it can be a good habitat for microorganisms that supports plant growth and increases its phytoremediation potential. The rhizospheric DNA was extracted from the procured plant samples. The library was prepared and sequenced using the Illumina platform. 16S rRNA data from the Next Generation Sequencing (NGS) platform was analyzed using the QIIME software package. Alpha diversity was estimated from statistical indices i.e. Shannon index, Chao1 index, and observed species. The rarefaction plots, rank abundance curve, krona graph, and heat map were generated to study the rhizospheric community in detail. Metagenome consisted of 225,408 flash reads, 185,008 non-chimeric sequences with 17,578 Operational Taxonomic Units (OTU’s), and 4622 OTU’s without singletons. The data of present study are available at NCBI Bioproject (PRJNA631882). The taxonomic analysis of OTU’s showed that the sequences belonged to major Phyla revealing the dominance of Proteobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia. The most abundant Genera in the sampled rhizosphere recorded were Thiothrix and Flavobacterium.
PMID:34021896 | DOI:10.1007/s11033-021-06413-x