Phys Med Biol. 2021 Aug 5. doi: 10.1088/1361-6560/ac1b1b. Online ahead of print.
ABSTRACT
Iterative reconstruction framework shows predominance in low dose and incomplete data situation. In the iterative reconstruction framework, there are two components, i.e., fidelity term aims to maintain the structure details of the reconstructed object, and the regularization term uses prior information to suppress the artifacts such as noise. A regularization parameter balances them, aiming to find a good trade-off between noise and resolution. Currently, the regularization parameters are selected as a rule of thumb or some prior knowledge assumption is required, which limits practical uses. Furthermore, the computation cost of regularization parameter selection is also heavy. In this paper, we address this problem by introducing CT image quality assessment (IQA) into the iterative reconstruction framework. Several steps are involved during the study. First, we analyze the CT image statistics using the dual dictionary method. Regularities are observed and concluded, revealing the relationship among the regularization parameter, iterations, and CT image quality. Second, with derivation and simplification of DDL procedure, a CT IQA metric named SODVAC is designed. The SODVAC locates the optimal regularization parameter that results in the reconstructed image with distinct structures and with no noise or little noise. Third, we introduce SODVAC into the iterative reconstruction framework and then propose a general image-quality-guided iterative reconstruction (QIR) framework and give a specific framework example (sQIR) by introducing SODVAC into the iterative reconstruction framework. sQIR simultaneously optimizes the reconstructed image and the regularization parameter during the iterations. Results confirm the effectiveness of the proposed method. No prior information needed and low computation cost are the advantages of our method compared with existing state-of-theart L-curve and ZIP selection strategies.
PMID:34352735 | DOI:10.1088/1361-6560/ac1b1b