Categories
Nevin Manimala Statistics

Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties

Med Sci Sports Exerc. 2021 Nov 10. doi: 10.1249/MSS.0000000000002824. Online ahead of print.

ABSTRACT

INTRODUCTION: Low-load resistance training with blood flow restriction (LL-BFR) has emerged as a viable alternative to conventional high-load (HL) resistance training regimens. Despite increasing evidence confirming comparable muscle adaptations between LL-BFR and HL resistance exercise, only very little is known about tendinous mechanical and morphological adaptations following LL-BFR. Therefore, the aim of the present study was to examine the effects of 14 weeks of LL-BFR and HL training on patellar tendon adaptations.

METHODS: N = 29 recreationally active male participants were randomly allocated into the following two groups: LL-BFR resistance training (20-35% one repetition maximum/1RM) or HL resistance training (70-85% 1RM). Both groups trained three times per week for 14 weeks. One week before and after the intervention, patellar tendon mechanical and morphological properties were assessed via ultrasound and magnetic resonance imaging (MRI). Additionally, changes in muscle cross-sectional area (CSA) were quantified by MRI and muscle strength via dynamic 1RM measurements.

RESULTS: The findings demonstrated that both LL-BFR and HL training resulted in comparable changes in patellar tendon stiffness (LL-BFR: + 25.2%, p = 0.003; HL: + 22.5%, p = 0.024) without significant differences between groups. Similar increases in tendon CSA were observed in HL and LL-BFR. Muscle mass and strength also significantly increased in both groups but were not statistically different between HL (+ 38%) and LL-BFR (+ 34%), except for knee extension 1RM where higher changes were seen in LL-BFR.

CONCLUSION: The present results support the notion that both HL and LL-BFR cause substantial changes in patellar tendon properties and the magnitude of changes are not significantly different between conditions. Further studies are needed which examine the physiological mechanisms underlying the altered tendon properties following LL-BFR training.

PMID:34772900 | DOI:10.1249/MSS.0000000000002824

By Nevin Manimala

Portfolio Website for Nevin Manimala