J Phys Chem Lett. 2022 Jan 19:864-871. doi: 10.1021/acs.jpclett.1c03374. Online ahead of print.
ABSTRACT
We present measurements of the product-channel branching ratios of the reactions (i) HD+ + HD forming H2D+ + D (38.1(30)%) and HD2+ + H (61.9(30)%), (ii) HD+ + D2 forming HD2+ + D (61.4(35)%) and D3+ + H (38.6(35)%), and (iii) D2+ + HD forming HD2++ D (60.5(20)%) and D3+ + H (39.5(20)%) at collision energies Ecoll near zero, i.e., below kB × 1 K. These branching ratios are compared with branching ratios predicted using three simple models: a combinatorial model (M1), a model (M2) describing the reactions as H-, H+-, D-, and D+-transfer processes, and a statistical model (M3) that relates the reaction rate coefficients to the translational and rovibrational state densities of the HnD3-n+ + H/D (n = 0, 1, 2 or 3) product channels. The experimental data are incompatible with the predictions of models M1 and M2 and reveal that the branching ratios exhibit clear correlations with the product state densities.
PMID:35045261 | DOI:10.1021/acs.jpclett.1c03374