Categories
Nevin Manimala Statistics

Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology

Int J Phytoremediation. 2022 Jan 25:1-12. doi: 10.1080/15226514.2022.2027865. Online ahead of print.

ABSTRACT

Direct discharge of raw domestic sewage enriched with nitrogenous and phosphorous compounds into the water bodies causes eutrophication and other environmental hazards with detrimental impacts on public and ecosystem health. The present study focuses on phycoremediation of gray water with Arthrospira sp. using an innovative hydrophobic ceramic membrane-based photobioreactor system integrated with CO2 biofixation and biodiesel production, aiming for green technology development. Surfactant and oil-rich gray water collected from the domestic kitchen was used wherein, chloride, sulfate, and surfactant concentrations were statistically optimized using response surface methodology (RSM), considering maximum microalgal growth rate as a response for the design. Ideal concentrations (mg/L) of working parameters were found to be 7.91 (sulfate), 880.49 (chloride), and 144.02 (surfactant), respectively to achieve optimum growth rate of 0.43 gdwt/L/day. Enhancement of growth rate of targeted microalgae by 150% with suitable CO2 (19.5%) supply and illumination in the photobioreactor affirms its efficient operation. Additionally, harvested microalgal biomass obtained from the process showed a biodiesel content of around 5.33% (dry weight). The microalgal treatment enabled about 96.82, 87.5, and 99.8% reductions in BOD, COD, and TOC, respectively, indicating the potential of the process in pollutant assimilation and recycling of such wastewater along with value-added product generation.

PMID:35075966 | DOI:10.1080/15226514.2022.2027865

By Nevin Manimala

Portfolio Website for Nevin Manimala