Categories
Nevin Manimala Statistics

Preliminary method for profiling volatile organic compounds in breath that correlate with pulmonary function and other clinical traits of subjects diagnosed with cystic fibrosis: a pilot study

J Breath Res. 2022 Feb 4. doi: 10.1088/1752-7163/ac522f. Online ahead of print.

ABSTRACT

Cystic fibrosis (CF) is characterized by chronic respiratory infections which progressively decrease lung function over time. Affected individuals experience episodes of intensified respiratory symptoms called pulmonary exacerbations (PEx) which accelerate pulmonary function decline and decrease survival. There is no standard classification for PEx, which results in treatments that are heterogeneous. Improving PEx classification and management is a significant priority for people with CF. Previous studies have shown volatile organic compounds (VOCs) in exhaled breath can be used as biomarkers because they are products of metabolic pathways dysregulated by different diseases. To provide insights on PEx classification and other clinical factors, exhaled breath was collected from subjects with CF, with some experiencing PEx and others at baseline. Exhaled breath was collected in Tedlar bags during tidal breathing for VOC analysis by solid phase microextraction coupled to gas chromatography-mass spectrometry. Statistical significance testing between quantitative and categorical clinical variables displayed percent-predicted forced expiratory volume in one second (FEV1pp) was decreased in subjects experiencing PEx. VOCs correlating with other clinical variables (body mass index, age, use of highly effective modulator therapies, and need for antibiotics) were also explored. VOCs correlating to potential confounding variables were removed and analyzed by regression for correlations with FEV1pp measurements. The VOC with the highest correlation with FEV1pp (3,7-dimethyldecane) also gave the lowest p-value when comparing subjects at baseline and during PEx. Receiver operator characteristic curves showed 3,7-dimethyldecane had a higher ability to classify PEx (area under the curve (AUC) = 0.91) relative to FEV1pp values at collection (AUC = 0.83). However, normalized ΔFEV1pp values had the highest capability to distinguish PEx (AUC = 0.93). These results show that exhaled VOCs may be a source of biomarkers for various clinical traits of CF, including PEx, that should be explored in larger sample cohorts and validation studies.

PMID:35120338 | DOI:10.1088/1752-7163/ac522f

By Nevin Manimala

Portfolio Website for Nevin Manimala