Categories
Nevin Manimala Statistics

Organophosphate tri- and diesters in source water supply and drinking water treatment systems of a metropolitan city in China

Environ Geochem Health. 2022 Aug 17. doi: 10.1007/s10653-022-01333-6. Online ahead of print.

ABSTRACT

The water contaminations with organophosphate triesters (tri-OPEs) and diesters (di-OPEs) have recently provoked concern. However, the distributions of these compounds in natural water sources and artificial water treatment facilities are poorly characterized. A comprehensive study was therefore performed to measure their concentrations in a water source, a long-distance water pipeline, and a drinking water treatment plant (DWTP). Eight tri-OPEs and 3 di-OPEs were found to be widely distributed, with total concentrations in source water and pipelines ranging from 290.6 to 843.9 ng/L. The most abundant pollutants were tris(1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate, tri-n-butyl phosphate (TnBP), and diphenyl phosphate (DPhP). Di-OPEs appeared to be removed less efficiently in the DWTP than the parent tri-OPEs, and the elimination efficiencies of tri-OPEs were structure-dependent. Long-distance pipeline transportation had no significant effect on the distributions of tri- and di-OPEs. Statistical analysis suggested that the sources of di-OPEs and the corresponding tri-OPEs differed, as did those of DPhP and di-n-butyl phosphate. A risk analysis indicated that tri-OPEs present limited ecological risks that are mainly due to TnBP and TCPP, and that the human health risks of tri-OPEs are negligible. However, di-OPEs (especially DPhP) may increase these risks. Further studies on the risks posed by di-OPEs in aquatic environments are therefore needed.

PMID:35976479 | DOI:10.1007/s10653-022-01333-6

By Nevin Manimala

Portfolio Website for Nevin Manimala