Categories
Nevin Manimala Statistics

Time-frequency characteristics of the vibrations underlying the first fetal heart sound: a preliminary study

Med Biol Eng Comput. 2023 Jan 4. doi: 10.1007/s11517-022-02756-0. Online ahead of print.

ABSTRACT

This work studied, for the first time, the time-frequency characteristics of the vibrations underlying the first fetal heart sound (S1). To this end, the continuous wavelet transform was used to produce time-energy and time-frequency representations of S1 from where five vibrations were studied by their timing, energy, and frequency characteristics in three gestational age groups (early, G1, preterm, G2, and term, G3). Results on a dataset of 1111 S1s (9 phonocardiograms between 33 and 40 weeks) indicate that such representations uncovered a set of five well-defined, non-overlapped, and large-energy vibrations whose features presented interesting behaviors. Thus, for each group, while the timing characteristics of the five vibrations were likely to be statically different, their frequencies were similar. Also, the energies of the vibrations were likely to be different only in G2 and G3. Alternatively, while the frequencies and energies of each vibration were likely to statistically change among groups (excluding the energy of the third vibration), the timings were more likely to change only from G1 to G2 and from G2 to G3. Therefore, this methodology seems suitable to detect and study the generating vibrations of S1. Future work will test the correlation between these vibrations and the valvular events.

PMID:36598675 | DOI:10.1007/s11517-022-02756-0

By Nevin Manimala

Portfolio Website for Nevin Manimala