Environ Technol. 2024 Aug 11:1-18. doi: 10.1080/09593330.2024.2388313. Online ahead of print.
ABSTRACT
High-salinity wastewater, owing to its intricate composition and challenging treatment requirements, poses a significant hurdle in water environmental governance. In this study, low-temperature evaporation technology is used to tackle wastewater containing the volatile organic compound such as N,N-dimethylacetamide (DMAC). Utilisation of comprehensive approaches involving experimental testing, mathematical modelling, and Aspen Plus software simulations, The influence of DMAC on evaporation efficiency is researched through the following factors which encompassing its effects on boiling point elevation, partial molar activation energy, and the formation of by-products. Additionally, the comparation of the impact of temperature, ionic strength, intermolecular interactions on the evaporation rate and the concentration of the volatile component DMAC in the condensate is also conducted in this study. After conducting a multiple linear regression analysis of evaporation efficiency using the Statistical Product and Service Solutions (SPSS) tool, it was discovered that temperature serves as the primary determinant influencing the evaporation rate. Additionally, ionic strength impacts solution viscosity, intermolecular interactions, and saturated vapour pressure by altering the intermolecular forces, thereby indirectly influencing both the evaporation rate and the quality of condensate water. The comparative analysis of single-effect and double-effect evaporation indicates that the optimal operating condition for double-effect evaporation yields an evaporation rate of 70%, with a remarkable 88% reduction in steam consumption compared to single one. Based on heat and mass balance principles, the mathematical model for double-effect evaporation is established to offer crucial data support for practical industrial applications.
PMID:39128844 | DOI:10.1080/09593330.2024.2388313