World J Urol. 2024 Aug 23;42(1):495. doi: 10.1007/s00345-024-05202-y.
ABSTRACT
OBJECTIVES: To develop and validate a prediction model for identifying non-prostate cancer (non-PCa) in biopsy-naive patients with PI-RADS category ≥ 4 lesions and PSA ≤ 20 ng/ml to avoid unnecessary biopsy.
PATIENTS AND METHODS: Eligible patients who underwent transperineal biopsies at West China Hospital between 2018 and 2022 were included. The patients were randomly divided into training cohort (70%) and validation cohort (30%). Logistic regression was used to screen for independent predictors of non-PCa, and a nomogram was constructed based on the regression coefficients. The discrimination and calibration were assessed by the C-index and calibration plots, respectively. Decision curve analysis (DCA) and clinical impact curves (CIC) were applied to measure the clinical net benefit.
RESULTS: A total of 1580 patients were included, with 634 non-PCa. Age, prostate volume, prostate-specific antigen density (PSAD), apparent diffusion coefficient (ADC) and lesion zone were independent predictors incorporated into the optimal prediction model, and a corresponding nomogram was constructed ( https://nomogramscu.shinyapps.io/PI-RADS-4-5/ ). The model achieved a C-index of 0.931 (95% CI, 0.910-0.953) in the validation cohort. The DCA and CIC demonstrated an increased net benefit over a wide range of threshold probabilities. At biopsy-free thresholds of 60%, 70%, and 80%, the nomogram was able to avoid 74.0%, 65.8%, and 55.6% of unnecessary biopsies against 9.0%, 5.0%, and 3.6% of missed PCa (or 35.9%, 30.2% and 25.1% of foregone biopsies, respectively).
CONCLUSION: The developed nomogram has favorable predictive capability and clinical utility can help identify non-PCa to support clinical decision-making and reduce unnecessary prostate biopsies.
PMID:39177844 | DOI:10.1007/s00345-024-05202-y