J Funct Biomater. 2025 Mar 20;16(3):113. doi: 10.3390/jfb16030113.
ABSTRACT
Nanoparticles are proposed as alternatives to traditional antimicrobial agents. By manipulating a nanoparticle’s core and surface coating, antimicrobial effects against various microbial populations can be customized, known as the “designer effect”. However, the antimicrobial properties of nanoparticle core-coating combinations are understudied; little research exists on their effects on diverse bacteria. The antimicrobial effects of surface-stabilized zero-valent iron nanoparticles (FeNPs) are particularly interesting due to their stability in water and ferromagnetic properties. This study explores the impact of FeNPs coated with three surface coatings on six diverse bacterial species. The FeNPs were synthesized and capped with L-ascorbic acid (AA), cetyltrimethylammonium bromide (CTAB), or polyvinylpyrrolidone (PVP) using a bottom-up approach. Zone of inhibition (ZOI) values, assessed through the disc diffusion assay, indicated that AA-FeNPs and CTAB-FeNPs displayed the most potent antibacterial activity. Bacteria inhibition results ranked from most sensitive to least sensitive are the following: Bacillus nealsonii > Escherichia coli > Staphylococcus aureus > Delftia acidovorans > Chryseobacterium sp. > Sphingobacterium multivorum. Comparisons using ordinal regression and generalized linear mixed models revealed significant differences in bacterial responses to the different coatings and nanoparticle concentrations. The statistical model results are in agreement, thus increasing confidence in these conclusions. This study supports the feasibility of the “designer nanoparticle” concept and offers a framework for future research.
PMID:40137392 | DOI:10.3390/jfb16030113