Comput Biol Med. 2025 Apr 17;191:110166. doi: 10.1016/j.compbiomed.2025.110166. Online ahead of print.
ABSTRACT
Early detection of brain tumors in MRI images is vital for improving treatment results. However, deep learning models face challenges like limited dataset diversity, class imbalance, and insufficient interpretability. Most studies rely on small, single-source datasets and do not combine different feature extraction techniques for better classification. To address these challenges, we propose a robust and explainable stacking ensemble model for multiclass brain tumor classification. To address these challenges, we propose a stacking ensemble model that combines EfficientNetB0, MobileNetV2, GoogleNet, and Multi-level CapsuleNet, using CatBoost as the meta-learner for improved feature aggregation and classification accuracy. This ensemble approach captures complex tumor characteristics while enhancing robustness and interpretability. The proposed model integrates EfficientNetB0, MobileNetV2, GoogleNet, and a Multi-level CapsuleNet within a stacking framework, utilizing CatBoost as the meta-learner to improve feature aggregation and classification accuracy. We created two large MRI datasets by merging data from four sources: BraTS, Msoud, Br35H, and SARTAJ. To tackle class imbalance, we applied Borderline-SMOTE and data augmentation. We also utilized feature extraction methods, along with PCA and Gray Wolf Optimization (GWO). Our model was validated through confidence interval analysis and statistical tests, demonstrating superior performance. Error analysis revealed misclassification trends, and we assessed computational efficiency regarding inference speed and resource usage. The proposed ensemble achieved 97.81% F1 score and 98.75% PR AUC on M1, and 98.32% F1 score with 99.34% PR AUC on M2. Moreover, the model consistently surpassed state-of-the-art CNNs, Vision Transformers, and other ensemble methods in classifying brain tumors across individual four datasets. Finally, we developed a web-based diagnostic tool that enables clinicians to interact with the proposed model and visualize decision-critical regions in MRI scans using Explainable Artificial Intelligence (XAI). This study connects high-performing AI models with real clinical applications, providing a reliable, scalable, and efficient diagnostic solution for brain tumor classification.
PMID:40249992 | DOI:10.1016/j.compbiomed.2025.110166