Categories
Nevin Manimala Statistics

Force spectroscopy reveals membrane fluctuations and surface adhesion of extracellular nanovesicles impact their elastic behavior

Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2414174122. doi: 10.1073/pnas.2414174122. Epub 2025 Apr 18.

ABSTRACT

The elastic properties of nanoscale extracellular vesicles (EVs) are believed to influence their cellular interactions, thus having a profound implication in intercellular communication. However, accurate quantification of their elastic modulus is challenging due to their nanoscale dimensions and their fluid-like lipid bilayer. We show that the previous attempts to develop atomic force microscopy-based protocol are flawed as they lack theoretical underpinning as well as ignore important contributions arising from the surface adhesion forces and membrane fluctuations. We develop a protocol comprising a theoretical framework, experimental technique, and statistical approach to accurately quantify the bending and elastic modulus of EVs. The method reveals that membrane fluctuations play a dominant role even for a single EV. The method is then applied to EVs derived from human embryonic kidney cells and their genetically engineered classes altering the tetraspanin expression. The data show a large spread; the area modulus is in the range of 4 to 19 mN/m and the bending modulus is in the range of 15 to 33 [Formula: see text], respectively. Surprisingly, data for a single EV, revealed by repeated measurements, also show a spread that is attributed to their compositionally heterogeneous fluid membrane and thermal effects. Our protocol uncovers the influence of membrane protein alterations on the elastic modulus of EVs.

PMID:40249788 | DOI:10.1073/pnas.2414174122

By Nevin Manimala

Portfolio Website for Nevin Manimala