Int Endod J. 2025 Apr 26. doi: 10.1111/iej.14243. Online ahead of print.
ABSTRACT
AIM: Tissue engineering can be applied to dentine regeneration, stimulating tissue repair by promoting mesenchymal cell migration and differentiation into odontoblast-like cells while modulating inflammation. This study aimed to investigate the effect of quercetin (QU) and calcium hydroxide (CH) incorporated into polycaprolactone (PCL)/polyethylene oxide (PEO) scaffolds on the differentiation of dental pulp stem cells (DPSCs) in a simulated inflammatory environment in vitro.
METHODOLOGY: Dental pulp stem cells (DPSCs) were cultured and treated with different concentrations of quercetin (QU) to assess cell viability, mineralized matrix production and responses under inflammatory stimuli. Reactive oxygen and nitrogen species, as well as TNF-α synthesis, were quantified using fluorescence and ELISA methods. Scaffolds of PCL/PEO with calcium hydroxide and QU were fabricated via electrospinning, characterized and analysed for cell adhesion, viability, inflammatory and mineralisation-related genes in an artificial pulp chamber model. Statistical analysis was performed using anova, Kruskal-Wallis and confidence intervals with a significance level of 5%.
RESULTS: Polycaprolactone/polyethylene oxide scaffolds incorporated with CH and QU showed cytocompatibility and support for DPSC differentiation at concentrations of up to 5 M diluted in the culture medium. After 14 days of treatment, the scaffolds upregulated ALPL gene expression under the inflammatory stimulus, with no differences between the control group and the nonincorporated scaffold. The expression of osteocalcin (OCN) and dentine sialophosphoprotein (DSPP) genes was significantly upregulated for the scaffold-treated group when stimulated with LPS.
CONCLUSIONS: Incorporating QU and CH into PCL/PEO scaffolds modulated the inflammatory-related response and upregulated mineralisation-related genes of LPS-challenged dental pulp stem cells.
PMID:40285990 | DOI:10.1111/iej.14243