Categories
Nevin Manimala Statistics

Extracting True Virus SERS Spectra and Augmenting Data for Improved Virus Classification and Quantification

ACS Sens. 2025 May 18. doi: 10.1021/acssensors.4c03397. Online ahead of print.

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a transformative tool for infectious disease diagnostics, offering rapid and sensitive species identification. However, background spectra in biological samples complicate analyte peak detection, increase the limit of detection, and hinder data augmentation. To address these challenges, we developed a deep learning framework utilizing dual neural networks to extract true virus SERS spectra and estimate concentration coefficients in water for 12 different respiratory viruses. The extracted spectra showed a high similarity to those obtained at the highest viral concentration, validating their accuracy. Using these spectra and the derived concentration coefficients, we augmented spectral data sets across varying virus concentrations in water. XGBoost models trained on these augmented data sets achieved overall classification and concentration prediction accuracy of 92.3% with a coefficient of determination (R2) > 0.95. Additionally, the extracted spectra and coefficients were used to augment data sets in saliva backgrounds. When tested against real virus-in-saliva spectra, the augmented spectra-trained XGBoost models achieved 91.9% accuracy in classification and concentration prediction with R2 > 0.9, demonstrating the robustness of the approach. By delivering clean and uncontaminated spectra, this methodology can significantly improve species identification, differentiation, and quantification and advance SERS-based detection and diagnostics.

PMID:40382719 | DOI:10.1021/acssensors.4c03397

By Nevin Manimala

Portfolio Website for Nevin Manimala