J Neuroeng Rehabil. 2025 May 18;22(1):111. doi: 10.1186/s12984-025-01619-7.
ABSTRACT
BACKGROUND: Children with cerebral palsy (CP) experience significant mobility and balance impairments. Non-invasive brain stimulation (NIBS), including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), has emerged as a potential therapeutic intervention. Nevertheless, the safety and effectiveness of NIBS in children with CP remain uncertain and require further investigation. This study aimed to evaluate the safety and effectiveness of NIBS in improving mobility and balance function in children with CP.
METHODS: Randomized controlled trials written in English were searched in five databases (PubMed, Embase, Scopus, Web of Science, and ProQuest), from the first available records in each database to April 2024. Statistical analysis focused on outcomes related to mobility and balance function immediately following intervention and one-month follow-up.
RESULTS: A total of 16 studies encompassing 346 children with CP, aged 3-14 years, were included. The meta-analysis indicated that NIBS is safe and well-tolerated [Risk Difference = 0.16, 95% CI – 0.01-0.33], with a low incidence of adverse events. Significant improvements were observed in mobility post-intervention and at one-month follow-up, particularly in Gross Motor Function Measure scores [standard mean difference (SMD) = 0.47 to 0.63, P < 0.05]. Gait parameters, including gait velocity (SMD = 1.28, P < 0.01) and stride length (SMD = 0.70, P = 0.01) showed immediate improvements. However, no significant improvements were found in balance post-tDCS or at follow-up.
CONCLUSIONS: Our findings support the use of NIBS as a safe and feasible tool for enhancing mobility in children with CP, demonstrating both immediate and sustained improvements in gait parameters such as velocity and stride length. However, the impact on balance remains inconclusive. Future research should focus on extending follow-up periods, increasing sample sizes, and exploring tailored stimulation protocols to better understand the long-term efficacy and optimal application of NIBS in pediatric populations.
PMID:40383797 | DOI:10.1186/s12984-025-01619-7