Brief Bioinform. 2025 May 1;26(3):bbaf223. doi: 10.1093/bib/bbaf223.
ABSTRACT
Network analysis has become an essential tool in biological and biomedical research, providing insights into complex biological mechanisms. Since biological systems are inherently time-dependent, incorporating time-varying methods is crucial for capturing temporal changes, adaptive interactions, and evolving dependencies within networks. Our study explores key time-varying methodologies for network structure estimation and network inference based on observed structures. We begin by discussing approaches for estimating network structures from data, focusing on the time-varying Gaussian graphical model, dynamic Bayesian network, and vector autoregression-based causal analysis. Next, we examine analytical techniques that leverage pre-specified or observed networks, including other autoregression-based methods and latent variable models. Furthermore, we explore practical applications and computational tools designed for these methods. By synthesizing these approaches, our study provides a comprehensive evaluation of their strengths and limitations in the context of biological data analysis.
PMID:40401349 | DOI:10.1093/bib/bbaf223