Radiol Med. 2025 May 22. doi: 10.1007/s11547-025-02022-x. Online ahead of print.
ABSTRACT
OBJECTIVE: This study evaluated the performance of CT radiomics in distinguishing between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) at baseline imaging, exploring its potential as a noninvasive virtual biopsy.
MATERIALS AND METHODS: A retrospective analysis was conducted, enrolling 330 patients between September 2015 and January 2023. Inclusion criteria were histologically proven ADC or SCC and baseline contrast-enhanced chest CT. Exclusion criteria included significant motion artifacts and nodules < 6 mm. Radiological features, including lung lobe affected, peripheral/central location, presence of emphysema, and T/N radiological stage, were assessed for each patient. Volumetric segmentation of lung cancers was performed on baseline CT scans at the portal-venous phase using 3DSlicer software (v5.2.2). A total of 107 radiomic features were extracted and selected using the least absolute shrinkage and selection operator (LASSO) and tenfold cross-validation. Multivariable logistic regression analysis was employed to develop three predictive models: radiological features-only, radiomics-only, and a combined model, with statistical significance set at p < 0.05. Additionally, an independent external validation cohort of 16 patients, meeting the same inclusion and exclusion criteria, was identified.
RESULTS: The final cohort comprised 200 ADC and 100 SCC patients (mean age 68 ± 10 years, 184 men). Two radiological and 21 radiomic features were selected (p < 0.001). The Radiological model achieved AUC 0.73 (95% CI 0.68-0.78, p < 0.001), 72.3% accuracy. The radiomics model achieved AUC 0.80 (95% CI 0.75-0.85, p < 0.001), 75.6% accuracy. The combined model achieved AUC 0.84 (95% CI 0.80-0.88, p < 0.001), 75.3% accuracy. External validation (n = 15) yielded AUC 0.78 (p = 0.05).
CONCLUSION: The combined radiologic-radiomics model showed the best performance in differentiating ADC from SCC.
PMID:40402434 | DOI:10.1007/s11547-025-02022-x