Bull Math Biol. 2025 Jun 25;87(8):102. doi: 10.1007/s11538-025-01482-6.
ABSTRACT
This study investigates the nutrient-driven adaptability of foraging efforts in producer-grazer dynamics. We develop two stoichiometric producer-grazer models: a base model incorporating a fixed energetic cost of feeding and an adaptive model where feeding costs vary over time in response to environmental conditions. By comparing these models, we examine the effects of adaptive foraging strategies on population dynamics. Our adaptive model suggests a potential mechanism for evolutionary rescue, where the population dynamically adjusts to environmental changes, such as fluctuations in food quality, by modifying its feeding strategies. However, when population densities oscillate in predator-prey limit cycles, fast adaptation can lead to very wide amplitude cycles, where populations are in danger of stochastic extinction. Overall, this increases our understanding of the conditions under which nutrient-driven adaptive foraging strategies can yield benefits to grazers.
PMID:40560462 | DOI:10.1007/s11538-025-01482-6