Categories
Nevin Manimala Statistics

Clinical value of the 70-kVp ultra-low-dose CT pulmonary angiography with deep learning image reconstruction

Eur Radiol. 2025 Jul 2. doi: 10.1007/s00330-025-11764-1. Online ahead of print.

ABSTRACT

OBJECTIVE: This study aims to assess the feasibility of “double-low,” low radiation dosage and low contrast media dosage, CT pulmonary angiography (CTPA) based on deep-learning image reconstruction (DLIR) algorithms.

MATERIALS AND METHODS: One hundred consecutive patients (41 females; average age 60.9 years, range 18-90) were prospectively scanned on multi-detector CT systems. Fifty patients in the conventional-dose group (CD group) underwent CTPA with 100 kV protocol using the traditional iterative reconstruction algorithm, and 50 patients in the low-dose group (LD group) underwent CTPA with a 70 kVp DLIR protocol. Radiation and contrast agent doses were recorded and compared between groups. Objective parameters were measured and compared. Two radiologists evaluated images for overall image quality, artifacts, and image contrast separately on a 5-point scale. The furthest visible branches were compared between groups.

RESULTS: Compared to the control group, the study group reduced the dose-length product by 80.3% (p < 0.01) and the contrast media dose by 33.3%. CT values, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) showed no statistically significant differences (all p > 0.05) between the LD and CD groups. The overall image quality scores were comparable between the LD and CD groups (p > 0.05), with good in-reader agreement (k = 0.75). More peripheral pulmonary vessels could be assessed in the LD group compared with the CD group.

CONCLUSION: 70 kVp combined with DLIR reconstruction for CTPA can further reduce radiation and contrast agent dose while maintaining image quality and increasing the visibility on the pulmonary artery distal branches.

KEY POINTS: Question Elevated radiation exposure and substantial doses of contrast media during CT pulmonary angiography (CTPA) augment patient risks. Findings The “double-low” CT pulmonary angiography protocol can diminish radiation doses by 80.3% and minimize contrast doses by one-third while maintaining image quality. Clinical relevance With deep learning algorithms, we confirmed that CTPA images maintained excellent quality despite reduced radiation and contrast dosages, helping to reduce radiation exposure and kidney burden on patients. The “double-low” CTPA protocol, complemented by deep learning image reconstruction, prioritizes patient safety.

PMID:40603771 | DOI:10.1007/s00330-025-11764-1

By Nevin Manimala

Portfolio Website for Nevin Manimala