Curr Issues Mol Biol. 2025 May 15;47(5):364. doi: 10.3390/cimb47050364.
ABSTRACT
Double-hydrolyzed collagen, a key structural protein, has gained increasing attention for its role in cancer progression and its potential therapeutic applications. This study aims to investigate the effects of double-hydrolyzed collagen (Type I and III peptides) on HCT116 colon carcinoma cells and CCD-18Co fibroblasts as a normal control. Cells were treated with 0.5 µg/mL, 1 µg/mL, and 1.5 µg/mL of collagen peptide solution. HCT116 and CCD-18Co cells were cultured under standard conditions and treated with 1 µg/mL collagen. Cell viability (MTT assay), migration (scratch assay), oxidative stress (TAS/TOS kits), TNF-α expression (qRT-PCR), and tumor marker levels (CA19-9, CEA, CA72-4, and CYFRA 21-1; CLIA) were evaluated. Cell viability, proliferation, migration, oxidative stress, and tumor marker levels were assessed. Statistical analyses were performed to determine significance. Double-hydrolyzed collagen treatment significantly increased CCD-18Co fibroblast proliferation (p = 0.0143), while HCT116 cancer cell numbers significantly decreased (p = 0.0045). Migration of HCT116 cells was markedly reduced (p < 0.0001), whereas no significant effect was observed in CCD-18Co fibroblasts (p = 0.559). Oxidative stress analysis showed decreased total oxidative status (TOS) and increased total antioxidant status (TAS) in HCT116 cells (p = 0.0075 and p = 0.0095, respectively), with no significant changes in normal fibroblasts. Among tumor markers, CA19-9 levels were significantly reduced in HCT116 cells (p = 0.013), while CEA, CA72-4, and CYFRA 21-1 remained unchanged. TNF-α gene expression analysis confirmed the absence of inflammatory or adverse effects in normal fibroblasts. These findings suggest that double-hydrolyzed collagen selectively inhibits colon cancer cell proliferation and migration, modulates oxidative stress, and reduces CA19-9 levels while promoting fibroblast growth. The differential effects between cancerous and normal cells highlight collagen’s potential as a complementary therapeutic approach for colorectal cancer. Further research is needed to elucidate the underlying mechanisms and assess its clinical applicability. Double-hydrolyzed collagen appears to be a safe and beneficial dietary component with promising biological effects and therapeutic potential.
PMID:40699763 | DOI:10.3390/cimb47050364