Sci Rep. 2025 Aug 22;15(1):30858. doi: 10.1038/s41598-025-14612-w.
ABSTRACT
This proposed work is presenting the approximation of higher-order (HO) underwater robotic vehicle (URV) controller with the help of multi-point matching technique by incorporating greywolf optimization algorithm (GWOA). The performance of URV system is affected by external and internal dynamics. The proper momentum of URV system is achieved by designing a controller. The URV can be effectively operated by control action of controller. The URV controller is approximated to comparatively lower-order (LO) to propose an efficient, effective and economical controller for HOURV system. The approximation is accomplished with the help of expansion parameters of HOURV controller and its desired LOURV controller. The errors between these expansion parameters of HOURV controller and its desired LOURV controller are minimized using multi-point matching. The multi-point matching is depicted in the form of objective function (OF). The constructed OF is minimized by exploiting GWOA by fulfilling the steady-state matching condition and Hurwitz stability criterion, as constraints. The effectiveness of proposed approach of multi-point matching is verified by comparing the proposed LOURV model with LOURV models obtained with the help of other approximation approaches. The applicability of proposed LOURV controller is evaluated and validated by analyzing responses and tabulated data obtained in the results. Additionally, the statistical data of performance error values (PEVs) are provided in tabulated form along with its bar plot.
PMID:40847035 | DOI:10.1038/s41598-025-14612-w