J Med Internet Res. 2025 Sep 16;27:e66667. doi: 10.2196/66667.
ABSTRACT
BACKGROUND: Determining effective nurse staffing levels is crucial for ensuring quality patient care and operational efficiency within hospitals. Traditional workload prediction methods often rely on professional judgment or simple volume-based approaches, which can be inaccurate. Machine learning offers a promising avenue for more data-driven and precise predictions, by using historical nursing workload data to forecast future patient care requirements, which could help with staff planning while also improving patient outcomes and nurse well-being.
OBJECTIVE: This methodological study aimed to use nursing activity data, specifically LEP (Leistungserfassung in der Pflege; “documentation of nursing activities”), to predict the future workload requirements using machine learning techniques.
METHODS: We conducted a retrospective observational study at the University Hospital of Zürich, using nursing workload data for inpatients across eight wards, collected between 2017 and 2021. Data were transformed to represent nursing workload per ward and shift, with 3 shifts per day. Variables used in modeling included historical workload trends, patient characteristics, and upcoming operations. Machine learning models, including linear regression variants and tree-based methods (Random Forest and XGBoost), were trained and tested on this dataset to predict workload 72 hours in advance, on a shift-by-shift basis. Model performance was assessed using mean absolute error and mean absolute percentage error, and results were compared against a baseline of assuming no change in workload from the time of prediction. Prediction accuracy was further evaluated by categorizing future workload changes into decreased, similar, or increased workload relative to current shift levels.
RESULTS: Our findings demonstrate that machine learning models consistently outperform the baseline across all wards. The best-performing model was the lasso regression model, which achieved an average improvement in accuracy of 25.0% compared to the baseline. When used to predict upcoming changes in workload levels, the model achieved strong classification performance, giving an average area under the receiver operating characteristic curve of 0.79 and precision values between 66.2% and 75.3%. Crucially, the model severely misclassified-predicting an upcoming increase as a decrease, and vice versa-in just 0.17% of cases, highlighting potential reliability for using the model in practice. Key variables identified as important for predictions include historical shift workload averages and overall ward workload trends.
CONCLUSIONS: This study suggests the potential of machine learning to enhance nurse workload prediction, while highlighting the need for refinement. Limitations due to potential discrepancies between recorded nursing activities and the actual workload highlight the need for further investigation into data quality. To maximize impact, future research should focus on: (1) using more diverse data, (2) more advanced machine learning architecture that performs time-series modeling, (3) addressing data quality concerns, and (4) conducting controlled trials for real-world evaluation.
PMID:40956986 | DOI:10.2196/66667