Genome Biol. 2025 Sep 17;26(1):282. doi: 10.1186/s13059-025-03735-y.
ABSTRACT
BACKGROUND: Data from Single-cell Assay for Transposase Accessible Chromatin with Sequencing (scATAC-seq) is highly sparse. While current computational methods feature a range of transformation procedures to extract meaningful information, major challenges remain.
RESULTS: Here, we discuss the major scATAC-seq data analysis challenges such as sequencing depth normalization and region-specific biases. We present a hierarchical count model that is motivated by the data generating process of scATAC-seq data. Our simulations show that current scATAC-seq data, while clearly containing physical single-cell resolution, are too sparse to infer true informational-level single-cell, single-region of chromatin accessibility states.
CONCLUSIONS: While the broad utility of scATAC-seq at a cell type level is undeniable, describing it as fully resolving chromatin accessibility at single-cell resolution, particularly at individual locus level, may overstate the level of detail currently achievable. We conclude that chromatin accessibility profiling at true single-cell, single-region resolution is challenging with current data sensitivity, but that it may be achieved with promising developments in optimizing the efficiency of scATAC-seq assays.
PMID:40963104 | DOI:10.1186/s13059-025-03735-y