Lifetime Data Anal. 2025 Oct 15. doi: 10.1007/s10985-025-09672-z. Online ahead of print.
ABSTRACT
In many clinical trials, one is interested in evaluating the treatment effect based on different types of outcomes, including recurrent and terminal events. The most popular approach is the time-to-first-event analysis (TTFE), based on the composite outcome of the time to the first event among all events of interest. The motivation for the composite outcome approach is to increase the number of events and potentially increase power. Other composite outcome or composite analysis methods are also studied in the literature, but are less adopted in practice. In this article, we first review the mainstream composite analysis methods and classify them into three categories: (A) Composite-outcome Methods, which combine multiple events into a composite outcome before analysis, e.g., combining events into a time-to-event outcome in TTFE and into a single recurrent event process in the combined-recurrent-event analysis (CRE); (B) Joint-analysis Methods, which test for the recurrent event process and the terminal event jointly, e.g., Joint Frailty Model (JFM), Ghosh-Lin Method (GL), and Nelsen-Aalen Method (NA); (C) Win-ratio type Methods that account for the ordering of two types of events, e.g., Win-fraction Regression (WR). We conduct comprehensive simulation studies to evaluate the performance of various types of methods in terms of type I error control and power under a wide range of scenarios. We found that the non-parametric joint testing approach (GL/NA) and CRE have overall the best performance. However, TTFE and WR exhibit relatively low power. Also, adding events that have no or weak association with treatment usually decreases power.
PMID:41091394 | DOI:10.1007/s10985-025-09672-z