Categories
Nevin Manimala Statistics

Integrated single-cell multi-omics profiling reveals a senescence-associated hematopoietic landscape and regulatory network in aging bone marrow

Biogerontology. 2025 Nov 24;27(1):10. doi: 10.1007/s10522-025-10352-6.

ABSTRACT

Bone marrow exhibits functional decline, yet cellular heterogeneity and molecular mechanisms remain unclear due to limitations of traditional research methods. This study aims to characterize age-related changes and identify key drivers in bone marrow. Integrated multi-omics analysis was performed using scRNA-seq, proteomics, pseudo-bulk transcriptomics, weighted gene co-expression network analysis (WGCNA)-based transcription factor (TF) network modeling, and CellChat analysis. Samples included 6 young and aged bone marrow specimens. Statistical validation involved differential expression analysis, Cox regression modeling, and receiver operating characteristic (ROC) curve analysis. A novel hematopoietic subpopulation (3.19% of aged samples) was identified, activating the cellular senescence pathway (KEGG) and enhancing inflammatory crosstalk with CD8⁺ T cells via NMU signaling (|avg_log2FC|> 0.58, p < 0.001). Pseudo-bulk and proteomic analyses identified CAPN1, MAP2K1, and JUND as potential signal modules. Immunohistochemistry and Western blot confirmed their co-expression, while molecular docking revealed interaction interfaces. In two independent bulk-RNA cohorts (n = 58), a Cox model based on the CAPN1-MAP2K1-JUND module showed robust predictive value for aging, with AUCs of 0.7507 (p = 0.0154) and 0.90 (p = 0.0274). This study identifies a pivotal molecular module linking single-cell dynamics to tissue-level senescence in bone marrow, providing new insights into aging mechanisms and potential therapeutic targets.

PMID:41284112 | DOI:10.1007/s10522-025-10352-6

By Nevin Manimala

Portfolio Website for Nevin Manimala