Sci Rep. 2025 Nov 27. doi: 10.1038/s41598-025-29168-y. Online ahead of print.
ABSTRACT
Deoxyribonucleic acid cryptography is a biologically inspired approach characterized by low computational complexity. It employs biological principles to create cryptographically strong ciphers, making it particularly suitable for protecting sensitive data on resource-constraints devices. However, the existing literature lacks solutions for securing authentication mechanisms tailored for these resource-constrained devices. To bridge this gap, the current study proposes a novel authentication design rooted in deoxyribonucleic acid cryptography, namely omega deoxyribonucleic acid cryptography key-based authentication. The proposed omega deoxyribonucleic acid cryptography-based authentication method aligns with contemporary standards for cryptographic systems and delivers a security level quantified at 256 bits of complexity. To validate its resilience, one tests the collision resistance of the proposed authentication mechanism using the standard Dieharder statistical test suite, where the mechanism successfully passes the collision resistance test. Additionally, the proposed scheme is mathematically proven secure against existential forgery under a chosen message attack.
PMID:41310192 | DOI:10.1038/s41598-025-29168-y