JMIR Form Res. 2025 Dec 10;9:e74195. doi: 10.2196/74195.
ABSTRACT
BACKGROUND: Google Street View (GSV) images offer a unique and scalable alternative to in-person audits for examining neighborhood built environment characteristics. Additionally, most prior neighborhood studies have relied on cross-sectional designs.
OBJECTIVE: This study aimed to use GSV images and computer vision to examine longitudinal changes in the built environment, demographic shifts, and health outcomes in Washington, DC, from 2014 to 2019.
METHODS: In total, 434,115 GSV images were systematically sampled at 100 m intervals along primary and secondary road segments. Convolutional neural networks, a type of deep learning algorithm, were used to extract built environment features from images. Census tract summaries of the neighborhood built environment were created. Multilevel mixed-effects linear models with random intercepts for years and census tracts were used to assess associations between built environment changes and health outcomes, adjusting for covariates, including median age, percentage male, percentage Hispanic, percentage African American, percentage college educated, percentage owner-occupied housing, and median household income.
RESULTS: Washington, DC, experienced a shift toward higher-density housing, with non-single-family homes rising from 66% to 72% of the housing stock. Single-lane roads increased from 37% to 42%, suggesting a shift toward more sustainable and compact urban forms. Gentrification trends were reflected in a rise in college-educated residents (16%-41%), a US $17,490 increase in the median household income, and a US $159,600 increase in property values. Longitudinal analyses revealed that increased construction activity was associated with lower rates of obesity, diabetes, high cholesterol, and cancer, while growth in non-single-family housing was correlated with reductions in the prevalence of obesity and diabetes. However, neighborhoods with higher proportions of African American residents experienced reduced construction activity.
CONCLUSIONS: Washington, DC, has experienced significant urban transformation, marked by substantial changes in neighborhood built environments and demographic shifts. Urban development is associated with reduced prevalence of chronic conditions. These findings highlight the complex interplay between urban development, demographic changes, and health, underscoring the need for future research to explore the broader impacts of neighborhood built environment changes on community composition and health outcomes. GSV imagery, along with advances in computer vision, can aid in the acceleration of neighborhood studies.
PMID:41370817 | DOI:10.2196/74195