Med Phys. 2022 Mar 22. doi: 10.1002/mp.15626. Online ahead of print.
ABSTRACT
PURPOSE: In recent years, deep-learning-based image processing has emerged as a valuable tool for medical imaging owing to its high performance. However, the quality of deep-learning-based methods heavily relies on the amount of training data; the high cost of acquiring a large dataset is a limitation to their utilization in medical fields. Herein, based on deep learning, we developed a computed tomography (CT) modality conversion method requiring only a few unsupervised images.
METHODS: The proposed method is based on CycleGAN with several extensions tailored for CT images, which aims at preserving the structure in the processed images and reducing the amount of training data. This method was applied to realize the conversion of megavoltage computed tomography (MVCT) to kilovoltage computed tomography (kVCT) images. Training was conducted using several datasets acquired from patients with head and neck cancer. The size of the datasets ranged from 16 slices (two patients) to 2745 slices (137 patients) for MVCT and 2824 slices (98 patients) for kVCT.
RESULTS: The required size of the training data was found to be as small as a few hundred slices. By statistical and visual evaluations, the quality improvement and structure preservation of the MVCT images converted by the proposed model were investigated. As a clinical benefit, it was observed by medical doctors that the converted images enhanced the precision of contouring.
CONCLUSIONS: We developed an MVCT to kVCT conversion model based on deep learning, which can be trained using only a few hundred unpaired images. The stability of the model against changes in data size was demonstrated. This study promotes the reliable use of deep learning in clinical medicine by partially answering commonly asked questions, such as “Is our data sufficient?” and “How much data should we acquire?” This article is protected by copyright. All rights reserved.
PMID:35315529 | DOI:10.1002/mp.15626