Categories
Nevin Manimala Statistics

Comparison of non-exercise cardiorespiratory fitness prediction equations in apparently healthy adults

Eur J Prev Cardiol. 2021 Apr 10;28(2):142-148. doi: 10.1177/2047487319881242.

ABSTRACT

AIMS: A recent scientific statement suggests clinicians should routinely assess cardiorespiratory fitness using at least non-exercise prediction equations. However, no study has comprehensively compared the many non-exercise cardiorespiratory fitness prediction equations to directly-measured cardiorespiratory fitness using data from a single cohort. Our purpose was to compare the accuracy of non-exercise prediction equations to directly-measured cardiorespiratory fitness and evaluate their ability to classify an individual’s cardiorespiratory fitness.

METHODS: The sample included 2529 tests from apparently healthy adults (42% female, aged 45.4 ± 13.1 years (mean±standard deviation). Estimated cardiorespiratory fitness from 28 distinct non-exercise prediction equations was compared with directly-measured cardiorespiratory fitness, determined from a cardiopulmonary exercise test. Analysis included the Benjamini-Hochberg procedure to compare estimated cardiorespiratory fitness with directly-measured cardiorespiratory fitness, Pearson product moment correlations, standard error of estimate values, and the percentage of participants correctly placed into three fitness categories.

RESULTS: All of the estimated cardiorespiratory fitness values from the equations were correlated to directly measured cardiorespiratory fitness (p < 0.001) although the R2 values ranged from 0.25-0.70 and the estimated cardiorespiratory fitness values from 27 out of 28 equations were statistically different compared with directly-measured cardiorespiratory fitness. The range of standard error of estimate values was 4.1-6.2 ml·kg-1·min-1. On average, only 52% of participants were correctly classified into the three fitness categories when using estimated cardiorespiratory fitness.

CONCLUSION: Differences exist between non-exercise prediction equations, which influences the accuracy of estimated cardiorespiratory fitness. The present analysis can assist researchers and clinicians with choosing a non-exercise prediction equation appropriate for epidemiological or population research. However, the error and misclassification associated with estimated cardiorespiratory fitness suggests future research is needed on the clinical utility of estimated cardiorespiratory fitness.

PMID:33838037 | DOI:10.1177/2047487319881242

By Nevin Manimala

Portfolio Website for Nevin Manimala