Bull Math Biol. 2023 Sep 7;85(10):97. doi: 10.1007/s11538-023-01202-y.
ABSTRACT
Several safe and effective vaccines are available to prevent individuals from experiencing severe illness or death as a result of COVID-19. Widespread vaccination is widely regarded as a critical tool in the fight against the disease. However, some individuals may choose not to vaccinate due to vaccine hesitancy or other medical conditions. In some sectors, regular compulsory testing is required for such unvaccinated individuals. Interestingly, different sectors require testing at various frequencies, such as weekly or biweekly. As a result, it is essential to determine the optimal testing frequency and identify underlying factors. This study proposes a population-based model that can accommodate different personal decision choices, such as getting vaccinated or undergoing regular tests, as well as vaccine efficacies and uncertainties in epidemic transmission. The model, formulated as impulsive differential equations, uses time instants to represent the reporting date for the test result of an unvaccinated individual. By employing well-accepted indices to measure transmission risk, including the basic reproduction number, the peak time, the final size, and the number of severe infections, the study shows that an optimal testing frequency is highly sensitive to parameters involved in the transmission process, such as vaccine efficacy, disease transmission rate, test accuracy, and existing vaccination coverage. The testing frequency should be appropriately designed with the consideration of all these factors, as well as the control objectives measured by epidemiological quantities of great concern.
PMID:37679577 | DOI:10.1007/s11538-023-01202-y