Environ Sci Pollut Res Int. 2024 Feb 29. doi: 10.1007/s11356-024-32651-0. Online ahead of print.
ABSTRACT
Shallow urban lakes are naturally vulnerable to ecosystem degradation. Rapid urbanization in recent decades has led to a variety of aquatic problems such as eutrophication, algal blooms, and biodiversity loss, increasing the risk to lake-wide ecological sustainability. Instead of a simple binary assessment of ecological risk, holistic evaluation frameworks that consider multiple stressors and receptors can provide a more comprehensive assessment of overall ecological risk. In this study, we analyzed a combined dataset of government statistics, remote sensing images, and 1 year of field measurements to develop an index system for urban lake ecological risk assessment based on the pressure-state-response (PSR) framework. We used the developed ecological safety index (ESI) system to evaluate the ecological risk for three urban lakes in Jiangsu Province, China: Lake Yangcheng-LYC, Lake Changdang-LCD, and Lake Tashan-LTS. LYC and LTS were classified as “mostly safe” and “generally recognized as safe,” respectively, while LCD was assessed as having “potential ecological risk.” Our data suggest that socioeconomic pressure and aquatic health are the two main factors affecting the ecological risk in both LYC and LCD. The ecological risk of LTS could be improved more effectively if regional management plans are well implemented. Our study highlights the pressure of external wastewater loading, low forest-grassland coverage, and lake shoreline damage on the three selected urban lakes. The findings of this study can inform watershed management for lake ecosystem restoration and environmental sustainability.
PMID:38421543 | DOI:10.1007/s11356-024-32651-0