Clin Chem. 2024 May 23:hvae072. doi: 10.1093/clinchem/hvae072. Online ahead of print.
ABSTRACT
BACKGROUND: When using biological variation (BV) data, BV estimates need to be robust and representative. High-endurance athletes represent a population under special physiological conditions, which could influence BV estimates. Our study aimed to estimate BV in athletes for metabolism and growth-related biomarkers involved in the Athlete Biological Passport (ABP), by 2 different statistical models.
METHODS: Thirty triathletes were sampled monthly for 11 months. The samples were analyzed for human growth hormone (hGH), insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), insulin, and N-terminal propeptide of type III procollagen (P-III-NP) by immunoassay. Bayesian and ANOVA methods were applied to estimate within-subject (CVI) and between-subject BV.
RESULTS: CVI estimates ranged from 7.8% for IGFBP-3 to 27.0% for insulin, when derived by the Bayesian method. The 2 models gave similar results, except for P-III-NP. Data were heterogeneously distributed for P-III-NP for the overall population and in females for IGF-1 and IGFBP-3. BV components were not estimated for hGH due to lack of steady state. The index of individuality was below 0.6 for all measurands, except for insulin.
CONCLUSIONS: In an athlete population, to apply a common CVI for insulin would be appropriate, but for IGF-1 and IGFBP-3 gender-specific estimates should be applied. P-III-NP data were heterogeneously distributed and using a mean CVI may not be representative for the population. The high degree of individuality for IGF-1, IGFBP-3, and P-III-NP makes them good candidates to be interpreted through reference change values and the ABP.
PMID:38781424 | DOI:10.1093/clinchem/hvae072