Categories
Nevin Manimala Statistics

Determination of the pathways of potential muscle damage and regeneration in response to acute and long-term swimming exercise in mice

Life Sci. 2021 Feb 21:119265. doi: 10.1016/j.lfs.2021.119265. Online ahead of print.

ABSTRACT

The objective of the current study was examining early and late (3, 24 h) responses to acute, chronic swimming exercise as muscle damage and regeneration in gastrocnemius-soleus muscle complexes. We also aimed to reveal the signaling pathways involved. 8-12 weeks old mice were grouped as control, exercise. Exercising groups were firstly divided into two as acute and chronic, later every group was again divided in terms of time (3, 24 h) passed from the last exercise session until exsanguination. Acute exercise groups swam 30 min, while chronic swimming groups exercised 30 min/day, 5 days/week, 6 weeks. Histological investigations were performed to determine muscle damage and regeneration. Whole-genome expression analysis was applied to total RNA samples. Microarray data was confirmed by quantitative real-time PCR. Exercising mice muscle revealed enhanced damage, leukocyte infiltration. Increments in acute and chronic 3 h groups were statistically significant. Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β, and Usp2 were down-regulated in muscles of swimming mice. The exercise-induced signaling pathways involved in muscle damage and regeneration were drawn. Our findings demonstrate that swimming induces muscle damage. Samples were obtained at 3 and 24 h following exercise, this time duration seems not sufficient for the development of myofibrillogenesis.

PMID:33626393 | DOI:10.1016/j.lfs.2021.119265

By Nevin Manimala

Portfolio Website for Nevin Manimala