Categories
Nevin Manimala Statistics

Class 1 integron causes vulnerability to formaldehyde in Escherichia coli

Arch Microbiol. 2021 Jun 19. doi: 10.1007/s00203-021-02445-w. Online ahead of print.

ABSTRACT

In this study, the relationships of integron 1 element, formaldehyde dehydrogenase, and orfF genes with the level of formaldehyde resistance of isolated E. coli were investigated. E. coli bacteria were isolated from apparently healthy and colibacillosis-affected broilers of Fars Province, Iran. Formaldehyde resistance level and the presence of genetic markers were measured using MIC, and PCR tests, respectively. The prevalence of integron 1 element, orfF, and formaldehyde dehydrogenase genes in E. coli isolates were 61%, 8%, and 94%, respectively. In addition, according to our cut off definition, 15% and 85% of isolates were resistant and sensitive to formaldehyde, respectively. None of the genes had a statistically significant relationship with the formaldehyde resistance; however, the isolates containing integron 1 were significantly more sensitive to formaldehyde in the MIC test than those without integron 1. Integron 1 gene cassette could carry some bacterial surface proteins and porins with different roles in bacterial cells. Formaldehyde could also interfere with the protein functions by alkylating and cross-linking, and this compound would affect bacterial cell surface proteins in advance. Through an increase in the cell surface proteins, the presence of integron 1 gene cassette might make E. coli more sensitive to formaldehyde. As integron 1 was always involved in increasing bacterial resistance to antibiotics and disinfectants such as QACs, this is the first report of bacterial induction of sensitivity to a disinfectant through integron 1. Finally, integron 1 does not always add an advantage to E. coli bacteria, and it could be assumed as a cause of vulnerability to formaldehyde.

PMID:34148112 | DOI:10.1007/s00203-021-02445-w

By Nevin Manimala

Portfolio Website for Nevin Manimala