Hereditas. 2025 Jan 9;162(1):4. doi: 10.1186/s41065-024-00363-7.
ABSTRACT
BACKGROUND: Cervical cancer (CC) is a prevalent gynecological malignancy, contributing to a substantial number of fatalities among women. MicroRNAs (miRNAs) have emerged as promising biomarkers with significant potential for the early detection and prognosis of CC.
OBJECTIVE: This study aimed to explore the clinical significance and biological role of miR-615-5p in CC, with the goal of identifying novel biomarkers for this disease.
MATERIALS AND METHODS: The levels of miR-615-5p and TMIGD2 mRNA in tissue samples and cells were quantified through quantitative reverse transcription real-time PCR, followed by statistical analyses to investigate the correlation between miR-615-5p and clinical data. The effects of miR-615-5p on the proliferation and metastasis of CC cells were evaluated using the Cell Counting Kit-8 and Transwell assays. The potential mechanism of miR-615-5p was elucidated by bioinformatics analyses and Dual-luciferase reporter assay. Western blotting was employed to measure the protein levels of TMIGD2.
RESULTS: In CC, the downregulation of miR-615-5p was related to poor prognosis and emerged as an independent prognostic factor. The levels of miR-615-5p were reduced in CC cells. miR-615-5p overexpression restrained the proliferation and metastasis of CC cells. Furthermore, TMIGD2 was identified as a target gene regulated by miR-615-5p, and its expression was notably elevated in CC. The influence of miR-615-5p on the biological behaviors of CC cells was mediated through the modulation of TMIGD2.
CONCLUSIONS: Downregulation of miR-615-5p was a prognostic indicator of poor prognosis in CC. miR-615-5p exerted its tumor-suppressive effects by inhibiting cell growth and metastasis through the regulation of TMIGD2.
PMID:39789663 | DOI:10.1186/s41065-024-00363-7