Acad Radiol. 2025 Jan 15:S1076-6332(24)01040-7. doi: 10.1016/j.acra.2024.12.052. Online ahead of print.
ABSTRACT
RATIONALE AND OBJECTIVES: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.
MATERIALS AND METHODS: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs). Each scan was reconstructed using both ADMIRE level 2 and a DL algorithm (ClariCT.AI, ClariPi Inc.), resulting in 192 datasets. Objective image quality was assessed by measuring CT value stability, image noise, and contrast-to-noise ratio (CNR) across consistent regions of interest (ROIs) in the liver parenchyma. Two radiologists independently evaluated subjective image quality based on overall image clarity, sharpness, and contrast. Inter-rater agreement was determined using Spearman’s correlation coefficient, and statistical analysis included mixed-effects modeling to assess objective and subjective image quality.
RESULTS: Objective analysis showed that the DL denoising algorithm did not significantly alter CT values (p ≥ 0.9975). Noise levels were consistently lower in denoised datasets compared to the Original (p < 0.0001). No significant differences were observed between the 25% mAs denoised and the 100% mAs original datasets in terms of noise and CNR (p ≥ 0.7870). Subjective analysis revealed strong inter-rater agreement (r ≥ 0.78), with the 50% mAs denoised datasets rated superior to the 100% mAs original datasets (p < 0.0001) and no significant differences detected between the 25% mAs denoised and 100% mAs original datasets (p ≥ 0.9436).
CONCLUSION: The DL denoising algorithm maintains image quality in PCCT imaging while enabling up to a 75% reduction in radiation dose. This approach offers a promising method for reducing radiation exposure in clinical PCCT without compromising diagnostic quality.
PMID:39818525 | DOI:10.1016/j.acra.2024.12.052