Categories
Nevin Manimala Statistics

MolSnapper: Conditioning Diffusion for Structure-Based Drug Design

J Chem Inf Model. 2025 Apr 18. doi: 10.1021/acs.jcim.4c02008. Online ahead of print.

ABSTRACT

Generative models have emerged as potentially powerful methods for molecular design, yet challenges persist in generating molecules that effectively bind to the intended target. The ability to control the design process and incorporate prior knowledge would be highly beneficial for better tailoring molecules to fit specific binding sites. In this paper, we introduce MolSnapper, a novel tool that is able to condition diffusion models for structure-based drug design by seamlessly integrating expert knowledge in the form of 3D pharmacophores. We demonstrate through comprehensive testing on both the CrossDocked and Binding MOAD data sets that our method generates molecules better tailored to fit a given binding site, achieving high structural and chemical similarity to the original molecules. Additionally, MolSnapper yields approximately twice as many valid molecules as alternative methods.

PMID:40248896 | DOI:10.1021/acs.jcim.4c02008

By Nevin Manimala

Portfolio Website for Nevin Manimala