Categories
Nevin Manimala Statistics

Cisplatin-Mediated IL-6 and IDO1 Suppression in Mesenchymal Stromal Cells: Implications for Tumor Microenvironment Modulation In Vitro

Curr Issues Mol Biol. 2025 Mar 27;47(4):231. doi: 10.3390/cimb47040231.

ABSTRACT

Mesenchymal stromal cells (MSCs) influence tumor biology and immunology by releasing cytokines, chemokines and growth factors. Currently, cisplatin is an integral part of drug-based tumor therapy, for example, in head and neck squamous cell carcinoma (HNSCC). Cisplatin treatment induces apoptosis as a primary mechanism of action; however, additional immunomodulatory effects of cisplatin are gaining interest. The aim of this study is to evaluate the possible immunomodulatory effects of cisplatin in human MSCs (hMSCs). The MSCs, obtained from human bone marrow, were characterized by analyzing plastic adherence, typical surface features, and ability to differentiate. Toxicity analysis of cisplatin’s effects on primary MSCs, including the determination of a subtoxic concentration, was performed using the MTT assay. Enzyme-linked immunosorbent assays (ELISA) and a quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify potentially immunomodulatory factors. Additionally, a scratch assay was performed to evaluate cell migration. First, subtoxic cisplatin concentrations were determined. A significantly reduced protein expression of indoleamine 2,3-dioxygenase 1 (IDO1) in MSCs under the influence of subtoxic cisplatin concentrations was demonstrated. Similarly, IL-6 protein expression was qualitatively reduced at subtoxic concentrations, although without statistical significance. At the mRNA level, qRT-PCR showed a non-significant, cisplatin concentration-dependent reduction in the expression of both IL-6 and IDO1. The scratch assay showed no statistically significant influence on migration after cisplatin treatment. In MSCs, there is tendency to a decrease in IL-6 and IDO1 at both protein and mRNA level after cisplatin exposure. These effects are congruent with each other and dose-dependent. This indicates that cisplatin not only acts via the known cytotoxic effect, but may induce a reduction in tumor-supporting proteins, like IL-6 and IDO1, by MSCs in the tumor microenvironment at subtoxic concentrations. Traditional cytostatic compounds, which can favorably modulate the immune system in the tumor microenvironment, may open new avenues to explore treatment strategies specifically targeting immunomodulation. Overall, the results indicate beneficial immunomodulation by cisplatin.

PMID:40699630 | DOI:10.3390/cimb47040231

By Nevin Manimala

Portfolio Website for Nevin Manimala