Thorac Cancer. 2025 Aug;16(15):e70144. doi: 10.1111/1759-7714.70144.
ABSTRACT
BACKGROUND: While established biomarkers predict immunotherapy response in advanced nonsmall cell lung cancer (NSCLC), additional noninvasive imaging biomarkers may enhance treatment selection. Pretreatment computed tomography (CT) texture analysis may provide tumor characterization to predict survival outcomes.
METHODS: We conducted a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and Cochrane Library databases were searched. Study quality was assessed using the quality in prognosis studies (QUIPS) tool. Hazard ratios (HRs) with 95% confidence intervals (CIs) were pooled using random-effects models.
RESULTS: Ten retrospective studies involving 2400 patients were included. Patients stratified as low-risk based on CT texture features demonstrated significantly improved survival outcomes compared to high-risk patients. The included studies used diverse radiomic features for risk stratification, including texture features from gray-level co-occurrence matrix (GLCM) such as entropy and dissimilarity, first-order statistical parameters including skewness and kurtosis, gray-level run-length matrix (GLRLM) features, and deep learning-derived features. Meta-analysis of five studies (n = 1102) revealed that patients stratified as low-risk based on these quantitative CT texture signatures had substantially better overall survival (OS) (p < 0.0001) with minimal heterogeneity (I2 = 0.0%). Similarly, progression-free survival (PFS) analysis of five studies (n = 1799) showed significant benefit for low-risk patients (p < 0.0001), though with moderate heterogeneity (I2 = 71.7%).
CONCLUSIONS: Pretreatment quantitative CT texture analysis effectively predicts survival outcomes in advanced NSCLC patients receiving immunotherapy, providing clinically meaningful risk stratification. This noninvasive imaging approach may serve as an additional tool to complement established pathological and molecular biomarkers, including liquid biopsy, for enhanced personalized treatment selection.
PMID:40755255 | DOI:10.1111/1759-7714.70144