Categories
Nevin Manimala Statistics

Spinal-QDCNN: advanced feature extraction for brain tumor detection using MRI images

Eur Spine J. 2025 Aug 9. doi: 10.1007/s00586-025-09147-7. Online ahead of print.

ABSTRACT

Brain tumor occurs due to the abnormal development of cells in the brain. It has adversely affected human health, and early diagnosis is required to improve the survival rate of the patient. Hence, various brain tumor detection models have been developed to detect brain tumors. However, the existing methods often suffer from limited accuracy and inefficient learning architecture. The traditional approaches cannot effectively detect the small and subtle changes in the brain cells. To overcome these limitations, a SpinalNet-Quantum Dilated Convolutional Neural Network (Spinal-QDCNN) model is proposed for detecting brain tumors using MRI images. The Spinal-QDCNN method is developed by the combination of QDCNN and SpinalNet for brain tumor detection using MRI. At first, the input brain image is pre-processed using RoI extraction. Then, image enhancement is done by using the thresholding transformation, which is followed by segmentation using Projective Adversarial Networks (PAN). Then, different processes, like random erasing, flipping, and resizing, are applied in the image augmentation phase. This is followed by feature extraction, where statistical features such as average contrast, kurtosis and skewness, and mean, Gabor wavelet features, Discrete Wavelet Transform (DWT) with Gradient Binary Pattern (GBP) are extracted, and finally detection is done using Spinal-QDCNN. Moreover, the proposed method attained a maximum accuracy of 86.356%, sensitivity of 87.37%, and specificity of 88.357%.

PMID:40782198 | DOI:10.1007/s00586-025-09147-7

By Nevin Manimala

Portfolio Website for Nevin Manimala