Environ Monit Assess. 2025 Sep 1;197(9):1069. doi: 10.1007/s10661-025-14535-z.
ABSTRACT
Airborne microbial communities show marked seasonal variability, with implications for both environmental processes and public health. In this study, metagenomic sequencing was applied to characterize airborne microbiota across four distinct seasons in India-winter (Sw), summer (Ss), southwest monsoon (Ssw), and northeast monsoon (Sne). Distinct shifts in dominant bacterial taxa were observed. Sne was dominated by Pseudomonas (42.3%) alongside sulfur-oxidizing Thiobacillus and Stenotrophomonas, likely influenced by lower temperatures and anthropogenic inputs. In Ss, Thiobacillus (72.9%) prevailed, followed by Pseudomonas (8.06%) and Sphingosinicella (6.68%), reflecting adaptation to arid, UV-intense conditions. Ssw featured Thiobacillus (58%) and Pseudomonas (18.5%) with additional plant-associated Lactobacillus and Clostridium, suggesting enhanced biogenic emissions. Sw was distinct for Enterococcus (21.9%) dominance and reduced Thiobacillus (16.2%), associated with high humidity and precipitation. Species richness followed the order Ssw > Sw > Ss > Sne, with the highest diversity during Ssw and Sw as indicated by Chao1, Fisher, Shannon, and Simpson indices. Kruskal-Wallis tests revealed no statistically significant differences in alpha diversity across seasons. Canonical Correspondence Analysis (CCA) highlighted strong seasonal structuring linked to environmental parameters such as temperature, humidity, and UV exposure. Dendrogram clustering showed greatest dissimilarity between Sne and Sw, while Ss and Ssw formed a closely related group. Ordination analyses (PCA, PCoA, NMDS) further confirmed seasonal distinctions. Seasonal variations in dominant bacterial taxa indicate potential public health risks in semi-urban tropical environments. Thiobacillus, prevalent in summer and the southwest monsoon, is generally non-pathogenic. In contrast, Pseudomonas species, abundant during the northeast monsoon and winter, are metabolically versatile, encompassing environmental strains and opportunistic pathogens known to cause respiratory and wound infections, especially in immunocompromised individuals. Winter also saw the presence of Enterococcus faecalis, a gut commensal and opportunistic pathogen linked to hospital-acquired infections and notable for multi-drug resistance. These seasonal shifts highlight varying exposure risks, emphasizing the need for public health attention to airborne microbial dynamics across different seasons.
PMID:40888959 | DOI:10.1007/s10661-025-14535-z