Brain Inform. 2025 Dec 3. doi: 10.1186/s40708-025-00281-y. Online ahead of print.
ABSTRACT
Brain-Computer Interfaces provide promising alternatives for detecting stress and enhancing emotional resilience. This study introduces a lightweight, subject-independent method for detecting stress during arithmetic tasks, designed for low computational cost and real-time use. Stress detection is performed through ElectroEncephaloGraphy (EEG) signal analysis using a simplified processing pipeline. The method begins with preprocessing the EEG recordings to eliminate artifacts and focus on relevant frequency bands (α, β, and γ). Features are extracted by calculating band power and its deviation from a baseline. A statistical thresholding mechanism classifies stress and no-stress epochs without the need for subject-specific calibration. The approach was validated on a publicly available dataset of 36 subjects and achieved an average accuracy of 88.89%. The method effectively identifies stress-related brainwave patterns while maintaining efficiency, making it suitable for embedded and wearable devices. Unlike many existing systems, it does not require subject-specific training, enhancing its applicability in real-world environments.
PMID:41335297 | DOI:10.1186/s40708-025-00281-y