Stat Med. 2026 Feb;45(3-5):e70399. doi: 10.1002/sim.70399.
ABSTRACT
In including random effects to account for dependent observations, the odds ratio interpretation of logistic regression coefficients is changed from population-averaged to subject-specific. This is unappealing in many applications, motivating a rich literature on methods that maintain the marginal logistic regression structure without random effects, such as generalized estimating equations. However, for spatial data, random effect approaches are appealing in providing a full probabilistic characterization of the data that can be used for prediction. We propose a new class of spatial logistic regression models that maintain both population-averaged and subject-specific interpretations through a novel class of bridge processes for spatial random effects. These processes are shown to have appealing computational and theoretical properties, including a scale mixture of normal representation. The new methodology is illustrated with simulations and an analysis of childhood malaria prevalence data in Gambia.
PMID:41641506 | DOI:10.1002/sim.70399