Categories
Nevin Manimala Statistics

Untangling adaptive functioning of PMM2-CDG across age and its impact on parental stress: a cross-sectional study

Sci Rep. 2023 Dec 20;13(1):22783. doi: 10.1038/s41598-023-49518-y.

ABSTRACT

Phosphomannomutase deficiency (PMM2-CDG) leads to cerebellar atrophy with ataxia, dysmetria, and intellectual deficits. Despite advances in therapy, the cognitive and adaptive profile remains unknown. Our study explores the adaptive profile of 37 PMM2-CDG patients, examining its association with parental stress and medical characteristics. Assessment tools included ICARS for the cerebellar syndrome and NPCRS for global disease severity. Behavioral and adaptive evaluation consisted of the Vineland Adaptive Behavior Scale and the Health of the Nation Outcome Scales. Psychopathological screening involved the Child Behavior Checklist and the Symptom Check-List-90-R. Parental stress was evaluated using Parental Stress Index. Results were correlated with clinical features. No significant age or sex differences were found. ‘Daily living skills’ were notably affected. Patients severely affected exhibited lower adaptive skill values, as did those with lipodystrophy and inverted nipples. Greater severity in motor cerebellar syndrome, behavioral disturbances and the presence of comorbidities such as hyperactivity, autistic features and moderate-to-severe intellectual disability correlated with greater parental stress. Our study found no decline in adaptive abilities. We provide tools to assess adaptive deficits in PMM2-CDG patients, emphasizing the importance of addressing communication, daily living skills, and autonomy, and their impact on parental stress in clinical monitoring and future therapies.

PMID:38129426 | DOI:10.1038/s41598-023-49518-y

Categories
Nevin Manimala Statistics

Mir-142-3P regulates MAPK protein family by inhibiting 14-3-3η to enhance bone marrow mesenchymal stem cells osteogenesis

Sci Rep. 2023 Dec 21;13(1):22862. doi: 10.1038/s41598-023-48950-4.

ABSTRACT

Clinical studies have found 14-3-3η to be associated with osteoporosis through undefined mechanisms. We aimed to investigate the role of 14-3-3η in osteoporosis and its potential associations with miRNAs. The Gene Expression Omnibus(GEO) and Human Protein Atlas 1 databases were analyzed to examine both the mRNA and protein expression of 14-3-3η in OP. Gene enrichment analyses were performed to explore the underlying mechanism of 14-3-3η based on DAVID. miRWalk was used to predict the associated miRNAs. The statistics were analysed by R software and SPSS software. 14-3-3η was overexpressed and knock down expressed in BMSCs by lentiviral vector transfecting. And BMSCs were induced by hypoxia. qRT-PCR and Western-Blot verified the expression of mRNA and protein. Scratch assay detected the migration of osteocytes. Co-immunoprecipitation and luciferase assay studied the 14-3-3η targeted protein and miRNA. overexpression and knock down of miRNA to verify the relationship of 14-3-3η and target genes. The 14-3-3η mRNA expression level was low in patients with osteoporosis, as corroborated by immunohistochemical staining images. Functional analyses revealed enrichment of the MAPK-associated cascade. 14-3-3η was correlated with MAPK family proteins and five key miRNAs, including mir-142-3p. In addition, 14-3-3η knockdown in BMSCs increased the mRNA and protein expression levels of Hif-α, VEGF, BMP-2, OPN, OST, and Runx2, and enhanced the cells migration ability. Under hypoxic conditions, Hif-α and BMP-2 protein expression levels were upregulated, whereas those of 14-3-3η and MAPK3 were downregulated. Co-immunoprecipitation experiments showed decreased binding of 14-3-3η to MAPK3. 14-3-3η knockdown produced the same results as hypoxia induction. Adding caspase3 inhibitor and knocking down 14-3-3η again prevented MAPK3 cleavage by caspase3 and inhibited BMP-2 expression. Moreover, under hypoxic conditions, miR-142-3P expression was upregulated and luciferase assays revealed 14-3-3η as its target gene. miR-142-3P overexpression decreased mRNA and protein levels of 14-3-3η and MAPK3, while increasing BMP-2 expression. miR-142-3P knockdown reversed these results. BMSC osteogenesis was suppressed by 14-3-3η, whereas miRNA-142-3p promoted it through the inhibition of 14-3-3η.

PMID:38129425 | DOI:10.1038/s41598-023-48950-4

Categories
Nevin Manimala Statistics

Significance of LHCGR polymorphisms in polycystic ovary syndrome: an association study

Sci Rep. 2023 Dec 21;13(1):22841. doi: 10.1038/s41598-023-48881-0.

ABSTRACT

This study was conducted to analyze the association of Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR) gene rs4953616 and rs7371084 polymorphisms with the risk of polycystic ovary syndrome (PCOS) in Punjab, India. A total of 823 women (443 PCOS cases and 380 healthy controls) were enrolled in the present study. The polymerase chain reaction-restriction fragment length polymorphism technique (PCR-RFLP) was used for genotyping. Anthropometric parameters, lipid and hormonal profiles, were compared between the two groups. Demographic features were compared using Mann Whitney U test while the Chi-square test and odds ratios (ORs) were used to assess the genetic association and risk towards PCOS, respectively. A one-way analysis of variance (ANOVA) test was employed to analyze the correlation of genotypes with baseline parameters in PCOS cases. A statistically significant difference was revealed in the genotypic and allelic frequencies of rs4953616 polymorphism between PCOS cases and controls (p = 0.01 and p = 0.004, respectively). The mutant genotype (TT), mutant allele (T), and recessive model of rs4953616 polymorphism conferred 1.77, 1.3, and 1.5 times risk towards PCOS, respectively. No significant distribution for genotypes and alleles was found for rs7371084 in both groups (p = 0.25 and p = 0.26, respectively). In addition to dyslipidemia, PCOS women also had significantly higher body mass index (BMI) and waist-to-hip ratio (WHR), testosterone (T), and luteinizing hormone (LH). Upon haplotype analysis, the TT haplotype was found to be significantly associated with the increased risk of PCOS. Our results demonstrated a significant role of LHCGR rs4953616 polymorphism in the development of PCOS.

PMID:38129424 | DOI:10.1038/s41598-023-48881-0

Categories
Nevin Manimala Statistics

Stoichiometry validation of supramolecular complexes with a hydrocarbon cage host by van ‘t Hoff analyses

Nat Commun. 2023 Dec 21;14(1):8246. doi: 10.1038/s41467-023-43979-5.

ABSTRACT

Defining chemical processes with equations is the first important step in characterizing equilibria for the assembly of supramolecular complexes, and the stoichiometry of the assembled components must be defined to generate the equation. Recently, this subject has attracted renewed interest, and statistical and/or information-theoretic measures were introduced to examine the validities of the equilibrium models used during curve fitting analyses of titration. The present study shows that these measures may not always be appropriate for credibility examinations and that further reformation of the protocols used to determine the overall stoichiometry is necessary. Hydrocarbon cage hosts and their chloroform complexes formed via weak CH-π hydrogen bonds were studied, which allowed us to introduce van ‘t Hoff analyses for effective validation of the stoichiometries of supramolecular complexes. This study shows that the stoichiometries of supramolecular complexes should be carefully examined by adopting multiple measures with different origins.

PMID:38129419 | DOI:10.1038/s41467-023-43979-5

Categories
Nevin Manimala Statistics

Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling

Nat Commun. 2023 Dec 21;14(1):8515. doi: 10.1038/s41467-023-44208-9.

ABSTRACT

Relative binding free energy calculations have become an integral computational tool for lead optimization in structure-based drug design. Classical alchemical methods, including free energy perturbation or thermodynamic integration, compute relative free energy differences by transforming one molecule into another. However, these methods have high operational costs due to the need to perform many pairwise perturbations independently. To reduce costs and accelerate molecular design workflows, we present a method called λ-dynamics with bias-updated Gibbs sampling. This method uses dynamic biases to continuously sample between multiple ligand analogues collectively within a single simulation. We show that many relative binding free energies can be determined quickly with this approach without compromising accuracy. For five benchmark systems, agreement to experiment is high, with root mean square errors near or below 1.0 kcal mol-1. Free energy results are consistent with other computational approaches and within statistical noise of both methods (0.4 kcal mol-1 or less). Notably, large efficiency gains over thermodynamic integration of 18-66-fold for small perturbations and 100-200-fold for whole aromatic ring substitutions are observed. The rapid determination of relative binding free energies will enable larger chemical spaces to be more readily explored and structure-based drug design to be accelerated.

PMID:38129400 | DOI:10.1038/s41467-023-44208-9

Categories
Nevin Manimala Statistics

Physicians’ beliefs and perceived importance of traumatic brain injury-associated agitation in critically ill patients: a survey of Canadian intensivists

Can J Anaesth. 2023 Dec 21. doi: 10.1007/s12630-023-02666-1. Online ahead of print.

ABSTRACT

PURPOSE: Agitation is a common behavioural problem following traumatic brain injury (TBI). Intensive care unit (ICU) physicians’ perspectives regarding TBI-associated agitation are unknown. Our objective was to describe physicians’ beliefs and perceived importance of TBI-associated agitation in critically ill patients.

METHODS: Following current standard guidance, we built an electronic, self-administrated, 42-item survey, pretested it for reliability and validity, and distributed it to 219 physicians working in 18 ICU level-1 trauma centres in Canada. We report the results using descriptive statistics.

RESULTS: The overall response rate was 93/219 (42%), and 76/93 (82%) respondents completed the full survey. Most respondents were men with ten or more years of experience. Respondents believed that pre-existing dementia (90%) and regular recreational drug use (86%) are risk factors for agitation. Concerning management, 91% believed that the use of physical restraints could worsen agitation, 90% believed that having family at the bedside reduces agitation, and 72% believed that alpha-2 adrenergic agonists are efficacious for managing TBI agitation. Variability was observed in beliefs on epidemiology, sex, gender, age, socioeconomic status, and other pharmacologic options. Respondents considered TBI agitation frequent enough to justify the implementation of management protocols (87%), perceived the current level of clinical evidence on TBI agitation management to be insufficient (84%), and expressed concerns about acute and long-term detrimental outcomes and burden to patients, health care professionals, and relatives (85%).

CONCLUSION: Traumatic brain injury-associated agitation in critically ill patients was perceived as an important issue for most ICU physicians. Physicians agreed on multiple approaches to manage TBI-associated agitation although agreement on epidemiology and risk factors was variable.

PMID:38129356 | DOI:10.1007/s12630-023-02666-1

Categories
Nevin Manimala Statistics

Chest Computed Tomography Characteristics of Critically Ill COVID-19 Patients with Auto-antibodies Against Type I Interferons

J Clin Immunol. 2023 Dec 22;44(1):15. doi: 10.1007/s10875-023-01606-4.

ABSTRACT

PURPOSE: Patients with auto-antibodies neutralizing type I interferons (anti-IFN auto-Abs) are at risk of severe forms of coronavirus disease 19 (COVID-19). The chest computed tomography (CT) scan characteristics of critically ill COVID-19 patients harboring these auto-Abs have never been reported.

METHODS: Bicentric ancillary study of the ANTICOV study (observational prospective cohort of severe COVID-19 patients admitted to the intensive care unit (ICU) for hypoxemic acute respiratory failure between March 2020 and May 2021) on chest CT scan characteristics (severity score, parenchymal, pleural, vascular patterns). Anti-IFN auto-Abs were detected using a luciferase neutralization reporting assay. Imaging data were collected through independent blinded reading of two thoracic radiologists of chest CT studies performed at ICU admission (± 72 h). The primary outcome measure was the evaluation of severity by the total severity score (TSS) and the CT severity score (CTSS) according to the presence or absence of anti-IFN auto-Abs.

RESULTS: Two hundred thirty-one critically ill COVID-19 patients were included in the study (mean age 59.5 ± 12.7 years; males 74.6%). Day 90 mortality was 29.5% (n = 72/244). There was a trend towards more severe radiological lesions in patients with anti-IFN auto-Abs than in others, not reaching statistical significance (median CTSS 27.5 (21.0-34.8) versus 24.0 (19.0-30.0), p = 0.052; median TSS 14.5 (10.2-17.0) versus 12.0 (9.0-15.0), p = 0.070). The extra-parenchymal evaluation found no difference in the proportion of patients with pleural effusion, mediastinal lymphadenopathy, or thymal abnormalities in the two populations. The prevalence of pulmonary embolism was not significantly different between groups (8.7% versus 5.3%, p = 0.623, n = 175).

CONCLUSION: There was no significant difference in disease severity as evaluated by chest CT in severe COVID-19 patients admitted to the ICU for hypoxemic acute respiratory failure with or without anti-IFN auto-Abs.

PMID:38129345 | DOI:10.1007/s10875-023-01606-4

Categories
Nevin Manimala Statistics

Expression of endosialin in human hypertrophic scars and its regulation on fibroblast phenotype

Zhonghua Shao Shang Za Zhi. 2023 Dec 20;39(12):1168-1174. doi: 10.3760/cma.j.cn501225-20231030-00154.

ABSTRACT

Objective: To explore the expression of endosialin, i.e., CD248 in human hypertrophic scars (HSs) and its regulatory effect on the phenotype of hypertrophic scar fibroblasts (HSFs). Methods: The method of experimental research was used. From March to May, 2023, 3 pediatric patients with HS were admitted to the Department of Burns and Cutaneous Surgery of the First Affiliated Hospital of Air Force Medical University, including 2 females and 1 male, aged one year ten months to two years. The HS tissue resected during the surgery and the remaining full-thickness skin graft, i.e., normal skin tissue after full-thickness skin grafting were collected from the aforementioned pediatric patients for subsequent experiments. Using the aforementioned two types of tissue, the histological structures were observed by hematoxylin-eosin staining, collagen distribution was observed by Masson staining, and the expression of CD248 was observed and measured by immunohistochemical staining. The primary HSFs were isolated from HS tissue using explant culture technique, and the 3rd to 5th passages of HSFs were used in subsequent experiments. According to the random number table, HSFs were divided into immunoglobulin G78 (IgG78)-treated group and IgG control group, which were treated with 200 nmol/L human CD248 monoclonal antibody IgG78 and human IgG control antibody for 24 h, respectively. The mRNA expressions of collagen type Ⅰ (Col Ⅰ) and α-smooth muscle actin (α-SMA) in HSFs were measured by real-time fluorescence quantitative reverse transcription polymerase chain reaction, the protein expressions of Col Ⅰ and α-SMA in HSFs were detected by Western blotting, and the intracellular location and protein expressions of Col Ⅰ and α-SMA were detected by immunofluorescence method. The number of samples in each experiment was 3. Data were statistically analyzed with paired sample t test and independent sample t test. Results: Compared with those in normal skin tissue, the epidermis and dermis in HS tissue were significantly thicker, with massive accumulation and disordered arrangement of collagen in the dermis. The expression of CD248 in HS tissue was significantly upregulated compared with that in normal skin tissue (t=5.29, P<0.05). At post treatment hour 24, the mRNA expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were 0.39±0.05 and 0.56±0.09, respectively, which were significantly lower than 1.00±0.07 and 1.00±0.08 in IgG control group, respectively (with t values of 11.87 and 6.49, respectively, P values all <0.05). The protein expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were 0.617±0.011 and 0.67±0.14, respectively, which were significantly lower than 1.259±0.052 and 1.23±0.16 in IgG control group, respectively (with t values of 20.92 and 4.52, respectively, P values all <0.05). At post treatment hour 24, immunofluorescence staining showed that Col Ⅰ and α-SMA mainly located in the cytoplasm of HSFs in the two groups, and the protein expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were obviously downregulated compared with those in IgG control group. Conclusions: The expression of CD248 is significantly upregulated in human HS. Targeted blockade of CD248 can significantly inhibit the collagen synthesis by HSFs and the transdifferentiation of HSFs into myofibroblasts.

PMID:38129304 | DOI:10.3760/cma.j.cn501225-20231030-00154

Categories
Nevin Manimala Statistics

CODA: an open-source platform for federated analysis and machine learning on distributed healthcare data

J Am Med Inform Assoc. 2023 Dec 21:ocad235. doi: 10.1093/jamia/ocad235. Online ahead of print.

ABSTRACT

OBJECTIVES: Distributed computations facilitate multi-institutional data analysis while avoiding the costs and complexity of data pooling. Existing approaches lack crucial features, such as built-in medical standards and terminologies, no-code data visualizations, explicit disclosure control mechanisms, and support for basic statistical computations, in addition to gradient-based optimization capabilities.

MATERIALS AND METHODS: We describe the development of the Collaborative Data Analysis (CODA) platform, and the design choices undertaken to address the key needs identified during our survey of stakeholders. We use a public dataset (MIMIC-IV) to demonstrate end-to-end multi-modal FL using CODA. We assessed the technical feasibility of deploying the CODA platform at 9 hospitals in Canada, describe implementation challenges, and evaluate its scalability on large patient populations.

RESULTS: The CODA platform was designed, developed, and deployed between January 2020 and January 2023. Software code, documentation, and technical documents were released under an open-source license. Multi-modal federated averaging is illustrated using the MIMIC-IV and MIMIC-CXR datasets. To date, 8 out of the 9 participating sites have successfully deployed the platform, with a total enrolment of >1M patients. Mapping data from legacy systems to FHIR was the biggest barrier to implementation.

DISCUSSION AND CONCLUSION: The CODA platform was developed and successfully deployed in a public healthcare setting in Canada, with heterogeneous information technology systems and capabilities. Ongoing efforts will use the platform to develop and prospectively validate models for risk assessment, proactive monitoring, and resource usage. Further work will also make tools available to facilitate migration from legacy formats to FHIR and DICOM.

PMID:38128123 | DOI:10.1093/jamia/ocad235

Categories
Nevin Manimala Statistics

Semi-supervised ROC analysis for reliable and streamlined evaluation of phenotyping algorithms

J Am Med Inform Assoc. 2023 Dec 21:ocad226. doi: 10.1093/jamia/ocad226. Online ahead of print.

ABSTRACT

OBJECTIVE: High-throughput phenotyping will accelerate the use of electronic health records (EHRs) for translational research. A critical roadblock is the extensive medical supervision required for phenotyping algorithm (PA) estimation and evaluation. To address this challenge, numerous weakly-supervised learning methods have been proposed. However, there is a paucity of methods for reliably evaluating the predictive performance of PAs when a very small proportion of the data is labeled. To fill this gap, we introduce a semi-supervised approach (ssROC) for estimation of the receiver operating characteristic (ROC) parameters of PAs (eg, sensitivity, specificity).

MATERIALS AND METHODS: ssROC uses a small labeled dataset to nonparametrically impute missing labels. The imputations are then used for ROC parameter estimation to yield more precise estimates of PA performance relative to classical supervised ROC analysis (supROC) using only labeled data. We evaluated ssROC with synthetic, semi-synthetic, and EHR data from Mass General Brigham (MGB).

RESULTS: ssROC produced ROC parameter estimates with minimal bias and significantly lower variance than supROC in the simulated and semi-synthetic data. For the 5 PAs from MGB, the estimates from ssROC are 30% to 60% less variable than supROC on average.

DISCUSSION: ssROC enables precise evaluation of PA performance without demanding large volumes of labeled data. ssROC is also easily implementable in open-source R software.

CONCLUSION: When used in conjunction with weakly-supervised PAs, ssROC facilitates the reliable and streamlined phenotyping necessary for EHR-based research.

PMID:38128118 | DOI:10.1093/jamia/ocad226